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Abstract-- A simple general relation for bubble growth rates in a uniformly superheated liquid was derived. 
The relation is valid in both regions: inertia controlled and heat diffusion controlled growth, respectively. 
The derived relation is compared with the existing experimental results for bubble growth in a uniformly 
superheated liquid with very good agreement. 

The results am further extended to the bubble growth in a non-uniform temperature field which approxi- 
mates the conditions present in a nucleate boiling from a heated surface. 

NOMENCLATURE 

a parameter, defined by equation (8); 
thermal diffusivity of liquid ; 
a parameter, defined by equation (9); 
a constant, defined by equation (7); 
latent heat of evaporation; 
Jakob number ; 
thermal conductivity; 
pressure ; 
bubble radius ; 
nondimensional bubble radius, defined 
by equation (12); 
radial coordinate ; 
temperature ; 
liquid superheat, T, - T,,, or T, - I&,,; 
time ; 
nondimensional time, defined by equa- 
tion (12); 
radial velocity. 

Subscripts 
b, bulk ; 
1, liquid ; 
0, vapor ; 
w, wall. 

Greek letters 
P* density of fluid ; 
6 surface tension ; 
@, subcooling factor, (T, - Q/( T, - 

INTRODUCTION 

BUBBLE growth rates were extensively investi- 
gated in the last few decades. Generally, the 
work has been divided into the following two 
main regions : growth rates controlled by inertia 
forces, applicable in the range of a relatively low 
pressure and high Jakob numbers, e.g. Rayleigh 
[I], and growth rates for heat diffusion con- 
trolled growth, e.g. Plesset and Zwick [2], 
Forster and Zuber [3], Scrieven [4], Dergara- 
bedian [SJ, Bankoff et al. [6]. The heat diffusion 
controlled growth was later extended to con- 
sideration of non-uniform temperature field 
effects, e.g. Grifith [7], Savic [8], Han and 
Griffith [9], Bankof and Mikesell [lo], Zuber 
[ll], Cole and Shuhnan [12], Van Stralen [13], 
Mikic and Rohsenow [14]. 

As the result of the above ~v~tigations, we 
have presently the two basic types of the growth 
rate relations each of which is applicable only 
to a given, though not distinctly defined, range. 
For a given set of bubble growth conditions, 
e.g. given fluid, pressure, liquid superheat, etc., 
we could not, a priori, tell in all cases which one 
of the two basic relations would apply unless 
we had some previous experimental results 
taken under similar conditions which identified 
the controlling mechanism for the bubble 
growth. The above uncertainty represents a 
serious disadvantage when one deals with 
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liquids or conditions for which bubble growth 
data are not available (for example liquid 
metals). 

Recently, Lien and Griffith [15] experiment- 
ally investigated bubble growth in uniformly 
superheated water covering the pressure range 
from 0.18 to 5.6 psia. They concluded that the 
bubble growth at very low pressures is controlled 
solely by inertia forces and that, as the pressure 
increases heat diffusion becomes a predominant 
factor, which at the upper part of their pressure 
range completely controlled the bubble growth. 
They also concluded that the interface resistance 
(kinetic effects) at the vapor-liquid interface is 
never a significant factor in bubble growth. 
This fact was never established before. The 
authors presented a growth curve in non- 
dimensional form showing that a single curve 
correlates all their experimental results. 

Mainly motivated by the experimental results 
of the above investigation, this work develops 
one single analytical relation applicable in the 
entire range of bubble growth in a u~fo~ly 
superheated liquid. 

Problem statement 
Consider a growing vapor bubble in a pool 

of liquid at a pressure p, and initially uniform 
temperature T,. Let pu and T, represent the 
vapor pressure and the vapor temperature 
inside a growing bubble, respectively. Let us 
further assume that the vapor is in equilibrium 
with the liquid, hence p0 and T, would represent 
a ~tu~tion state for the considered fluid. 

In general, the vapor pressure and tempera- 
ture, respectively, could lie in the following 
range: p, < p, < Kf”) and T,,, < TV < T, 
where p(T,) is the vapor pressure corresponding 
to the saturation temperature T, and Tsat is the 
saturation temperature corresponding to the 
pressure pa. 

From the condition that pV d p(T,) immedi- 
ately follows that the growing bubble must be 
bigger than a critical size bubble for which the 
entire available pressure drop [p(T,) - p.J 

would occur across the vapor-liquid interface 
due to the surface tension forces. 

The conditions which determine the bubble 
growth can be stated as follows : 

(i) The vapor pressure inside the growing 
bubble is related, in principal, to the motion of 
the vapor-liquid interface (and liquid) through 
the momentum equation. 

(ii) The vapor temperature is related to the 
bubble growth rate through the energy balance 
requirement which relates the rate of bubble 
growth (vapor generation) to the heat llux at 
the vapor-liquid interface (and the tempera- 
ture distribution in the liquid). 

(iii) Finally, since the thermodynamic equili- 
brium is assumed, the vapor temperature is 
related to the vapor pressure through the 
Clausius-Clapeyron equation. 

Principally, then, the above three conditions, 
which could be presented by three analytical 
relations, completely determine the bubble 
growth rate, i.e. R (bubble radius), pu and T, can 
be expressed as a fiction of time (for a given 
initial condition). 

As it was pointed out earlier, presently the 
solutions for the bubble growth problem exists 
only for the two limiting cases, namely 

(1) When the pressure inside the bubble was 
assumed to be the maximum possible pressure 
p(T,) and the growth was solved from the 
momentum equation, i.e. condition (i). The 
above approach would imply that T, = T, 
i.e. that a negligible temperature potential 
between the liquid and the vapor (T, - T,) is 
required to generate necessary boot of vapor 
for the particular bubble growth. This solution 
is known as inertially controlled growth. 

(2) The second type of solutions assumes that 
the temperature inside the growing bubble is 
the minimum possible temperature, i.e. T,,,. 
This solution is derived only from condition (ii). 
The solution implies that the vapor pressure is 
p, and hence, that a negligible amount of 
pressure difference 01, - p,) is required to 
displace the liquid for the particular growth. 
This type of the solution is known as heat 
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diffusion controlled growth or the asymptotic 
solution. 

The purpose of this work is to derive a 
solution which could be applicable to the 
entire range of possible cases. 

General relations 
In the following analysis it will be assumed 

that the bubble grows from R = 0, rather than 
from a critical radius R,. This standard approach 
is already used on the two existing solutions with 
good results. Furthermore, the analysis will not 
use the equation of motion to relate vapor 
pressure to the liquid motion. Instead, the 

which starts to grow at t = 0 at r = 0 (Fig. la). 
The equation of continuity, assuming that the 
liquid is incompressible and extends in all 
directions to infinity, is given as 

fi (A) = 0 

where u is liquid velocity. 
At the liquid-vapor interface (r = R), neglect- 

ing the mass transfer due to evaporation 

dR 
U,=R = -. 

dt 

Integrating equation (1) from r = R to one 

(0) 

FIG. 

(b) 

related equation of mechanical energy will be obtains liquid velocity in terms of the interface 
used. Neglecting irreversible conversion to velocity 
internal energy, gravitational effects and work dR RZ 
done by viscous forces, this approach consists (2) 
of equating the total kinetic energy of the 

“=dt; . 0 

moving liquid at any time with the work done The total kinetic energy (K.E.) of the liquid 

at the liquid boundaries. This approach is more mass at any time can be computed from relation 
convenient for the case of a spherical bubble (2) as follows : 
growth attached to a surface, where the momen- 
tum equation is complicated due to the absence 
of spherical symmetry, but the value for the 
total kinetic energy exists in the literature. 

Consider a growth of a spherical bubble 

K.E. = 4j.‘dV= $T E(fJ]’ 4zr2dr 

R R 
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or after integration 

. 

For a spherical bubble growth 
surface (Fig. lb) the total kinetic 
been calculated [ 16-171 as* 

dR 2 
K.E. = 9.35p, dt R3 

0 

(3) 

on a plane 
energy has 

(3a) 

Assuming, for simplicity, that the gravity is 
not present-the assumption, as it can be easily 
shown, does not limit the results of the analysis 
only to the conditions of zero gravity-we can 
equate the total kinetic energy of the system 
(liquid mass) with the work done on its 
boundaries. 

Taking that the bubble grows from R = O-R, 
the net work to the liquid can be expressed as 

W= 4&+R2dR - $rp, R3. (4) 
0 

The first term on the right-hand side in the 
above equation represents the work done to the 
liquid on the liquid-vapor interface. pi is the 
pressure on the liquid side of the interface, which 
can be related to the vapor pressure inside the 
growing bubble (p,) as 

20. 
PO = Pi + x 

The second term on the right-hand side in 
relation (4) represents the work done by the 
liquid on the environment at pa, (neglecting the 
work done by the viscous forces on a heated 
surface for the case of the bubble growth on the 
surface). Substituting the above relation for pi 
in equation (4), equating the latter with the total 
kinetic energy for the case of growth in an 
infinite pool of liquid, equation (3), and 
differentiating the obtained result with respect 

* 9.35 was taken from [16]. Slightly different coefficient 
(9.33) has been calculated by an approximate method in [17]. 

to R, one gets the known form of the equation of 
motion, i.e. 

,,[;(~~+R$]=p,-pm-;. (5) 

Again, as pointed out earlier, we will not use 
equation (5) in our analysis directly for the 
reasons already stated. 

Neglecting the pressure drop across the 
liquid-vapour interface, the work done on the 
liquid follows from (4) as 

W= 47&p, - pm)R2dR 
0 

= ;nR3 [(p” - p,) - $ $3 

where the last expression was obtained by 
successive integration by parts. Assuming that 
the variation in the vapor pressure for each 
individual bubble growth is not large, we can 
approximate the integral only with the first term 
on the right-hand side, i.e. 

W N $ nR3(p, - p,) (6) 

implying also, for variable pv, that the total value 
of the integral for W comes predominantly from 
the contribution at the integration near the 
upper limit of the integral. Additional discussion 
of the error involved by the use of relation (6) is 
given later when overall results are considered. 

Equating now the approximate expression 
for the net work done, equation (6), with the total 
kinetic energy of the liquid, equation (3) or 
(3a), one obtains : 

bP” -Pm 

Pl 
(7) 

where b = 2/3 for bubble growth in an infinite 
mass of liquid, and b = n/7 for a spherical 
bubble growing attached to a surface. 
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Bubble growth in a unijimnly superheated liquid 
at T, 

Using the Clausius-Clayeyron equation and 
linearizing it one can relate the pressure differ- 
ence to the corresponding temperature difference 
as 

P” - Pm _ T, - L 
PI PI T,,, 

P” h,, 

With the above relation (7) changes into 

dR 2 0 - = 
dt 

A2 T, - T,,, 
AT (8) 

where 

AT=T,-T,,, and A=ks)‘. 

The bubble grows due to the evaporation of 
the liquid at the vapor-liquid interface. The heat 
required for the evaporation is supplied from the 
superheated liquid. The driving temperature 
potential between the liquid and vapor is 
(Tm - TO). For the cases when the vapor density 
is very small, relatively small evaporation will 
cause substantial bubble growth. So here very 
little temperature difference (T, - TJ is needed. 
In the limit T, + T, and T, - T,,, = AT With 
this one can integrate equation (8) directly, 
obtaining the well known Rayleigh solution for 
the bubble growth controlled by the inertia 
forces only, as 

R = At. 

In general, T, is different from T, and could 
take any value between the two limits of T, and 
T,,, depending on the particular conditions 
present in the considered growth. 

The bubble growth in an initially superheated 
liquid due to a constant temperature difference 
(Tm - T,) was investigated, as pointed out 
earlier, by Plesset and Zwick [2], Striven [4] and 
others. In [2] the following relation was de- 
veloped 

dR 1 B T, - T, 

-=2jt AT dt 

L&3-$@) (9) 

where 

B=r Ja _ ATc,P, 
--&iY 

a, is the liquid thermal diffusivity. 
If the variations in TV for a particular bubble 

growth is not large during most of the time of its 
growth, then it would be reasonable to assume 
that relation (9) can be used for an approximate 
evaluation of vapor temperature required for a 
given growth. This relates T, to (dR/dt). It 
can be shown that this approach is equivalent of 
assuming that the shape of the temperature 
profile inside the boundary layer around the 
growing bubble does not change in time (remains 
selfsymmetric) and that the thickness of this 
layer (penetration depth) is proportional to 
(ar t)). Further discussion of the error involved 
in the above approximation is presented later 
in the general discussion of the results. 

Thus, solving for (TV - Y&,)/AT from relation 
(9), and substituting the result in equation (8), 
one obtains the following 

1 dR2 

0 

2,/t dR - 
A2 dt +Bdt 

-l=O. (10) 

Or after solving for dR/dt and expressing the 
result in a dimensionless form 

dR+ 
- = (t+ + l), - (t+)+ 
dt+ (11) 

where 

and 

R+ =!!? 
B2 

(12) 
A2t t+ =-. 
BZ i 
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Integrating (11) and setting R+ = 0 at tf = 0, 
the general bubble growth relation was obtained 
as 

R+ = ;[(t+ + l)+ - (t+)+ - 11. (13) 

For t+ 4 1 (13) simplifies into the Rayleigh 
solution 

R+=t+ or R = At. (14) 

For t+ % 1 one gets from (13) the Plesset and 
Zwick relation 

R+ = &+) or R = B,jt. (15) 

The derived relation for the bubble growth, as 
it can be seen above, goes to the right limits on 
the both ends. This was expected since in the 
derivation the exact conditions on the both ends 
were built in. 

Bubble growth in a non-unijorm temperaturefield 
For a bubble growth on a heated surface at a 

temperature T, in a liquid at a temperature Tb 
and pressure pm, expression (8) is still valid but 
here we define AT as AT = T, - T,,,, where 
Tat, as before, is saturation temperature corres- 
ponding to the pressure pm. The constant b in 
the expression for A, according to the previous 
discussion concerning the total kinetic energy 
for a spherical bubble growth on a surface, has 
a value of n/7. 

Mikic and Rohsenow [14] considered bubble 
growth in a non-uniform temperature field. 
They used one-dimensional model corrected for 
sphericity in order to get in the limit the correct 
result for the bubble growth in a uniformly 
superheated liquid, equation (9). The model 
basically consists of the following two steps: 
(i) liquid at a uniform temperature & comes into 
contact with a surface at T, and (ii) after time 
t, the bubble forms and grows in the non- 
uniform temperature field obtained in the pre- 
vious step during the time t,. The vapor tempera- 
ture inside the bubble is constant at TV. The 
following result was obtained 

p” h,, p = k, j3 w 
I + 

L - Tb 
- [7ca,(t + t,)]+ 1 (16) 

or 

t in the above relations is measured from the 
commencement of the bubble growth. B has the 
same value as in the previous section, with the 
understanding that AT in the Jakob Number 
and throughout this section is T, - T,,,. 0 repre- 
sents the measure of the subcooling and it is 
defined as 

For the same reasons as used in the previous 
section, we assume that relation (16a) can be 
used to relate T, to dR/dt for a particular bubble 
growth. Thus, calculating T, from (16a), and 
substituting the result into (8), the following non- 
dimensional relation was obtained 

dR+ 
+ 2Jt+- 

dt+ 

-[l-e&y]=0 
where R+ and t+ are defined by equation (12). 

The above expression yields the bubble growth 
rates as 

$=[t++1+e(&)‘li-(ti)‘. (17) 

For t,’ + co, the case of the growth in a uni- 
formly superheated liquid, relation (17) reduces 
to expression (11). 

Integration of equation (17) could be per- 
formed for given parameters 19 and t,’ . In the next 
section some results for 8 = 1 and different 
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values of t,’ are presented. For cases where 
t+ 9 1 integration of (17) yields ([14]): 

- (18) 

RESULTS AND DISCUSSION 

Equation (13) is plotted in Fig. 2 (solid line 
denoted by t,’ = co covering six orders of 
magnitude for R+ range (from 10S4 to 102) and 
seven orders of magnitude for t+ (from 10m4 to 
103). 

recorded range of the growth. The analysis, 
however, will not give the correct prediction for 
initial stages of a bubble growth. For example, in 
Fig. 2 solid circles represent experimental points 
for a particular bubble growth. The first point 
corresponds to t = 5.5 x 10m4 s, R = O-587 mm 
and the last point to t = 7 x lo- 3 s, R = 
6.88 mm. The bubble did not approach its first 
recorded point along the prediction line from 
equation (13), since for this particular bubble the 
line left of its first recorded point would corres- 
pond to very small radii and actual times, where 
the assumptions incorporated in the analysis 
are not justifiable. In particular: (i) the analysis 
assumes that the bubble starts to grow from 

FIG. 2. 

The experimental results of Lien and Griffith 
[15] for bubble growth rates in a uniformly 
superheated liquid (water) are presented on the 
figure for comparison. The experimental results 
comprise growth rates for six different bubbles, 
each at a different pressure. 

As it can be seen from the figure, the agreement 
between the prediction, based on the present 
analysis, and the experimental results is very 
good. We can conclude, based on the above 
agreement, that relation (13) predicts bubble 
growth for each individual bubble in all of its 

R = 0 at t = 0; however, as pointed out earlier, 
a bubble cannot exist in a thermodynamic 
equilibrium with the surrounding liquid for 
radii smaller than certain critical radius (RJ 
determined by the fluid properties and the liquid 
superheat [R, = 20( T,,,)/(hfB pV AT)] ; (ii) in this 
work we also neglected the pressure drop across 
liquid-vapor interface (this assumption is also 
implicitly included in point (i) and this is not 
acceptable in the range of the bubble radii close 
to R,; (iii) finally, our assumption involving the 
use of relation (9) (Plesset-Zwick equation) for 
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the evaluation of the vapor temperature inside 
the growing bubble are not correct in the initial 
stages of the bubble growth. 

Nevertheless, as it can be seen from the 
comparison, the uncertainty related to the early 
life history of a bubble did not noticeably affect 
the prediction for most of its life range. 

The two critical assumptions used in this work 
are the one involved in derivation of equation (6) 
and the use of Plesset-Zwick relation to express 
T, as a function of dR/dt. In the following, due 
to the significance of those assumptions, we pay 
an additional attention to them. 

The first one introduced in the evaluation of 
the integral in expression (4) is equivalent, as 
can be seen by comparing relations (7) and (5), 
of assuming that the quantity 

is negligible compared to unity. If the growth 
law in a particular region is R - t” then the 
above quantity reduces to 

21-n -- 
3 n’ 

On the far left of our curve (t ’ 4 1) it is seen 
that n = 1 and the above term is zero. In the 
region around t+ = 1, where the both effects 
(inertia and heat diffusion) are equally im- 
portant, growth rate is approximately R - t* 
and the above term has the value of 2/9 ; since 
this error is present only in the inertia contribu- 
tion, the overall effect on the growth rate in this 
range should be less than indicated by the above 
result. In the region where t+ % 1 the inertia 
effects are altogether negligible and therefore it 
is immaterial what is the relative significance of 
the omitted term. 

To estimate the error involved in using the 
Plesset-Zwick relation for evaluation of the 
vapor temperature, one can employ integral 
technique, assuming the temperature profile 
which will give in the limit (when TV is constant) 
the Plesset-Zwick relation, specifying the vari- 

able heat flux at the vapor-liquid interface as 
p,hse(dR/dt), and calculate the interface tempera- 
ture from the obtained result. This was done and 
the result shows that the use of the Plesset- 
Zwick relation for the evaluation of T, is 
equivalent of assuming that 

or 

Again, if the growth law in a certain range of 
parameters is given as R - t” one gets 
rl = (1/2n)“. On th e right-hand side (large t+) 
of our curve, when heat diffusion is the con- 
trolling factor, n = 3 and, of course g = 1, 
i.e. no error is involved in using Plesset-Zwick 
relation. In the region where both mechanisms 
are equally important, n = $ and q = 0.82. 
Hence, the error in evaluating (T, - T,) is 
about 18 per cent. For t+ G 1 the diffusion does 
not play any significant role in the bubble 
growth and the error involved in the evaluation 
of TV is unimportant (although it is interesting 
to note that even there rl = 0.71). 

In conclusion, then, we can state that all the 
assumptions involved in the derivation of the 
general growth rate relation, equation (13), did 
not affect substantially its accuracy in the entire 
range of interest, which is, what is most im- 
portant, confirmed by the available experimental 
results. 

In Fig. 2, results of integration of equation (17), 
for 8 = 1 and several values of t,’ (from t,’ = 
10 to tz = OQl) are presented. It can be seen 
from the plot that the temperature non- 
uniformity could have strong effect on bubble 
growth. Experimental results for the growth in a 
non-uniform temperature field for which waiting 
time (t,J was recorded exists only in the range of 
t+ $ 1. These results were already compared 
with the prediction, equation (18) in [14], with a 
good agreement. 

Data for bubble growth on a heated surface 
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at reduced pressure (this would be normally 
located in the range oft+ around unity and less) 
do exist, e.g. Cole and Shuhnan [12], but with- 
out required information concerning waiting 
time. In general the results presented in [ 121 fall 
below the prediction from equation (11) 
approximately by a factor of two, suggesting 
that temperature non-uniformity and possibly 
subcooling had a strong effect on the growth in 
the reported experiments. This behavior is in 
qualitative agreement with the trends shown in 
Fig. 2, where, for example, one can see that 
waiting time of the same order of magnitude as 
departure time would reduce the bubble radius 
almost by a factor of two (compared with the 
case of tz + co). 

CONCLUSIONS 

For a bubble growth in a uniformly super- 
heated liquid the following relation, applicable 
in the entire range of the growth curve (including 
inertia controlled and diffusion controlled 
growth, respectively). was developed : 

R+ = +[t+ + l)* - (t’)” - l] 

where 
R 

R+ = B2fA’ 
t -*t+ =- 

B2fA2 

b = 3 for bubble growth in an infinite medium ; 
b = 747 for bubble growth on a surface. 

The analysis was also extended to consider 
effects of the non-uniform temperature field 
present in the case of a bubble growth on a 
heated surface. 
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SUR LES VITESSES DE CROISSANCE DES BULLES 

Resume--Une relation g&&ale et simple pour les vitesses de croissance des bulles a ettc obtenue dans un 
liquide uniform6ment surchauffe. La relation est valable dans deux regions: respectivement celle de la 
croissance contrblee par l’inertie et celle de la croissance contrbke par la diffusion de la chaleur. La relation 
obtenue est comparte avec un trbs bon accord avec les rtsultats experimentaux existant pour la croissance 
des bulles dam un liquide surchautfe uniformkment. 

Les rtsultats sont ktendus plus loin a la croissance des bulles dans un champ non uniforme de tempera- 
ture qui rend compte dune fapon approchk des conditions existant dans une tbullition nucl&e B partir 

dune surface chauffke. 
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UBER BLASENWACHSTUMSRATEN 

Zusammenfassung-Fiir die Blasenwachstumsraten in einer gleichmiissig tiberhitzten Fhissigkeit wurde 
eine einfache allgemeine Beziehung abgeleitet. Die Beziehung ist fib beide Gebiete, sowohl ftir das Trlg- 
heitskraft- wie such ftir das Wiirmediffusions- geregelte Wachstum gtiltig. Die abgeleitete Beziehung kann 
sehr gut mit den vorhandenen experimentellen Ergebnissen fiir das Blasenwachstum in einer gleichmlssig 
tiberhitzten Fhissigkeit verglichen werden. 

Die Ergebnisse erstrecken sich such auf das Blasenwachstum in einem nicht einheitlichen Temperatur- 
feld, was angeniihert den Bedingungen ftir das Blasensieden an einer beheizten Oberflgche entspricht. 

0 CHOPOCTM POCTA IIY3bIPbKOR 

kiHOTal(Wk-RbIBeAeHO IIpOCTOe OfiIL&F COOTHOIIIeHHe AJIH CKOPOCTLl pOCT3 IIY3bIPbHOR B 

OaHOPOAHO Wc?pWpeTOt ?KMAKOCTEZ. COOTHOIIEHW CIIpaBeAJIKBO AJIR RBJ'X o6nacTen: KOrR3 

POCT IIJ'3bIPbKOB OIIpe#S'lHeTCfl CIlJIaMH HHepIJHll A T0PMOAH(l@J'3Piei%. BbIBe@HHOe COOTHO- 

lIEHE XOPOIIIO COIYEICJY?TCR C IdMeIO~&iMklCH 3KCIIepRMeHTaJIbHbIMEi p03yJIbTaTaMI4 II0 POCTJJ 

IIJ'3bIPbKOB B OfiHOPOAHO IEpWpeTO# HWAKOCTLI. 

Pe3J'JIbTaTbI paCIIpOCTpaHeHb1 Ha CJIJ'WIii pOCT3 IIY3bIPbHOB B HeOAHOPOAHOM TeMIEpa- 

TY~H~M none, hronenupyromeu ycnoaarr, nMeiomue uecro npu nAepnom nnnennn Ha narperoti 
IIOBepXHOCTH. 


